6. If $xy + x^2 = 6$, then the value of $\frac{dy}{dx}$ at x = -1 is (A) -7 (B) -2 (C) 0 (D) 1

(E) 3

Ans

- 25. If y is a differentiable function of x, then the slope of the tangent to the curve $xy - 2y + 4y^2 = 6$ at the point where y = 1 is

 - (A) $\frac{1}{12}$ (B) $-\frac{1}{10}$ (C) $-\frac{1}{6}$ (D) $\frac{1}{4}$ (E) $-\frac{5}{6}$

9. If
$$x + 2xy - y^2 = 2$$
, then at the point $(1, 1)$, $\frac{dy}{dx}$ is

(A)
$$\frac{3}{2}$$

(B)
$$\frac{1}{2}$$

0. If
$$x + 2xy - y^2 = 2$$
, then at the point (1, 1), $\frac{dy}{dx}$ is

(A) $\frac{3}{2}$
(B) $\frac{1}{2}$
(C) 0
(D) $-\frac{3}{2}$
(E) nonexistent

(D)
$$-\frac{3}{2}$$

- 5. Consider the curve $x + xy + 2y^2 = 6$. The slope of the line tangent to the curve at the point (2,1) is
 - (A) $\frac{2}{3}$
 - (B) $\frac{1}{3}$
 - (C) $-\frac{1}{3}$
 - (D) $-\frac{1}{5}$
 - (E) $-\frac{3}{4}$

Ans

- 15. The slope of the tangent line to the curve $2xy + \sin y = 2\pi$ at the point where $y = \pi$ is
 - (A) -2π
 - (B) -π
 - (C) 0
 - (D) π
 - (E) 2π

24. The slope of the line tangent to the graph of $ln(x + y) = x^2$ at the point where x = 1 is

(A) 0

(B) 1 (C) e-1 (D) 2e-1 (E) e-2

Ans

- 8. If $\cos x = e^y$ and $0 < x < \frac{\pi}{2}$, what is $\frac{dy}{dx}$ in terms of x?
 - (A) $-\tan x$
 - (B) $-\cot x$
 - (C) $\cot x$
 - (D) $\tan x$
 - (E) $\csc x$

4. If
$$y^2 - 3x = 7$$
, then $\frac{d^2y}{dx^2} =$

(A) $\frac{-6}{7y^3}$ (B) $\frac{-3}{y^3}$ (C) 3 (D) $\frac{3}{2y}$ (E) $\frac{-9}{4y^3}$

(A)
$$\frac{-6}{7y^3}$$

(B)
$$\frac{-3}{y^3}$$

(D)
$$\frac{3}{2y}$$

(E)
$$\frac{-9}{4y^3}$$

- 28. At time t a particle moving along the x-axis is at position x. The relationship between x and t is given by: $tx = x^2 + 8$. At x = 2 the velocity of the particle is
 - (A) 1
 - (B) 2
 - (C) 6
 - (D) -2
 - (E) -1

Consider the curve given by $xy^2 - x^3y = 6$.

- (a) Show that $\frac{dy}{dx} = \frac{3x^2y y^2}{2xy x^3}.$
- (b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
- (c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

(a)
$$3c \cdot 2y \frac{dy}{dx} + y^2 - (3x^2y + x^3 \frac{dy}{dx}) = \sqrt{3x^2y + y^2 - 3x^2y - x^3 \frac{dy}{dx}} = 0$$